Chapter 6 Lecture 1
 Canonical Transformations

Alkhlaq Hussain

6.1 Canonical Transformations

Hamiltonian formulation $\quad H\left(q_{i}, p_{i}\right)=\sum_{i=1}^{N} p_{i} \dot{q}_{i}-L \quad$ (Hamiltonian)

$$
\begin{aligned}
\dot{p}_{i} & =-\frac{\partial H}{\partial q_{i}} \\
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}}
\end{aligned}
$$

one can get the same differential equations to be solved as are provided by the Lagrangian procedure.

$$
\begin{array}{lr}
L\left(\dot{q}_{i}, q_{i}\right)=T-V & \text { (Lagrangian) } \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=0 & \text { (Lagrange's equation) }
\end{array}
$$

Therefore, the Hamiltonian formulation does not decrease the difficulty of solving Problems. The advantages of Hamiltonian formulation is not its use as a calculation tool, but rather in deeper insight it offers into the formal structure of the mechanics.

6.1 Canonical Transformations

$>$ In Lagrangian mechanics $\left\{L\left(\dot{q}_{i}, q_{i}\right)\right\}$ system is described by " q_{i} " and velocities" \dot{q}_{i} " in configurational space,
$>$ The parameters that define the configuration of a system are called generalized coordinates and the vector space defined by these coordinates is called configuration space.
$>$ The position of a single particle moving in ordinary Euclidean Space (3D) is defined by the vector $q=q(x, y, z)$ and therefore its configuration space is $Q=\mathbb{R}^{3}$
$>$ For n disconnected, non-interacting particles, the configuration space is
 $\mathbb{R}^{3 n}$.

6.1 Canonical Transformations

In Hamiltonian $\left\{H\left(q_{i}, p_{i}\right)\right\}$ we describe the state of the system in Phase space by generalized coordinates and momenta.
$>$ In dynamical system theory, a Phase space is a space in which all possible states of a system are represented with each possible state corresponding to one unique point in the phase space.
$>$ There exist different momenta for particles with same position and vice versa.

6.1 Canonical Transformations

$>$ To understand the importance of Hamiltonian let us consider a problem for which solution of Hamilton's equations are trivial (simple) and Hamiltonian is constant of motion.
$>$ For this case all the coordinates " q_{i} " of the problem will be cyclic and all conjugate " p_{i} " momenta will be constant.

Since

$$
\begin{aligned}
p_{i} & =\alpha_{i}=\text { Constant } \\
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}}=\frac{\partial H}{\partial \alpha_{i}}=\omega_{i} \\
q_{i} & =\omega_{i} t+\beta_{i}
\end{aligned}
$$

And
β_{i} is constant and can be find by the initial conditions.
But in real problem it is not necessary that all the coordinates are cyclic.

6.1 Canonical Transformations

$>$ Practically, it rarely happens that all the coordinates are cyclic.
$>$ However a system can be described by more than one set of generalized coordinates.
$>$ The motion of particle in plane is described by generalized coordinates either the cartesian coordinates.

In cartesian coordinates

$$
q_{1}=x, \quad \& \quad q_{1}=y
$$

In polar coordinates

$$
q_{1}=r, \quad \& \quad q_{1}=\theta
$$

Both choices are equally valid, but one of the set may be more convenient for the problem under the consideration. Not that for the central force neither x , nor y is cyclic while the second set does contain a cyclic coordinate θ

6.1 Canonical Transformations

$>$ The number of cyclic coordinates thus depend on choice of generalized coordinates, and for each problem there may be one choice for which all the coordinates are cyclic.
$>$ Since the generalized coordinates suggested by the problem will not be cyclic normally, we must first derive a specific procedure for transforming from one set of variables to some other set that may be more suitable.

6.1 Canonical Transformations

$>$ Let us consider transformation equations

$$
Q_{i}=Q_{i}\left(q_{i}, p_{i}, t\right), \& P_{i}=P_{i}\left(q_{i}, p_{i}, t\right)
$$

$>$ Such that the general dynamical theory is invariant under these transformations.
$>$ Let us consider a function $K\left(Q_{i}, P_{i}, t\right)$ such that

$$
\dot{P}_{i}=-\frac{\partial K}{\partial Q_{i}} \quad \& \quad \dot{Q}_{i}=\frac{\partial K}{\partial P_{i}}
$$

$Q_{i} \& P_{i}$ are called canonical coordinates and transformation $q_{i} \longrightarrow Q_{i} \& p_{i} \longrightarrow P_{i}$
$Q_{i}=Q_{i}\left(q_{i}, p_{i}, t\right), \& P_{i}=P_{i}\left(q_{i}, p_{i}, t\right)$ are known as canonical transformations.

6.1 Canonical Transformations

Here " $K\left(Q_{i}, P_{i}, t\right)$ " play role of Hamiltonian and $Q_{i} \& P_{i}$ must satisfy Hamilton's principle.

$$
\begin{align*}
& \delta \int_{t_{1}}^{t_{2}}\left[\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)\right] d t \tag{1}\\
& \delta \int_{t_{1}}^{t_{2}}\left[\sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)\right] d t=0 \tag{2}
\end{align*}
$$

Equation (1) and Equation (2) may not be qual, therefore we can find a function " F " such that

$$
\int_{t_{1}}^{t_{2}} \frac{d F}{d t} d t=F\left(t_{2}\right)-F\left(t_{1}\right)
$$

and

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}} \frac{d F}{d t} d t=0 \quad \text { where } \delta F\left(t_{2}\right)=\delta F\left(t_{1}\right) \tag{3}
\end{equation*}
$$

and $\quad \sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d F}{d t}$
Function " F " is called generating function.

6.1 Canonical Transformations

$>$ There are four different possibilities for " F "

1) $F_{1}\left(q_{i}, Q_{i}, t\right)$ Provided that q_{i}, Q_{i} are treated as independent
2) $F_{2}\left(q_{i}, P_{i}, t\right)$ Provided that q_{i}, P_{i} are treated as independent
3) $F_{3}\left(p_{i}, Q_{i}, t\right)$ Provided that p_{i}, Q_{i} are treated as independent
4) $F_{4}\left(p_{i}, P_{i}, t\right)$ Provided that p_{i}, P_{i} are treated as independent

6.1 Canonical Transformations

Case I: Eq. 3 can be written as

$$
\begin{equation*}
\sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d F_{1}}{d t} \tag{4}
\end{equation*}
$$

Since $\quad \frac{d F_{1}\left(q_{i}, Q_{i}, t\right)}{d t}=\sum \frac{\partial F_{1}}{\partial q_{i}} \dot{q}_{i}+\sum \frac{\partial F_{1}}{\partial Q_{i}} \dot{Q}_{i}+\frac{\partial F_{1}}{\partial t} \quad$ Therefore Eq. (4) \ldots

$$
\sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\sum \frac{\partial F_{1}}{\partial q_{i}} \dot{q}_{i}+\sum \frac{\partial F_{1}}{d Q_{i}} \dot{Q}_{i}+\frac{\partial F_{1}}{\partial t}
$$

Comparing coefficient of " \dot{q}_{i} " \& " \dot{Q}_{i} " on both sides

$$
\begin{align*}
& p_{i}=\frac{\partial F_{1}}{\partial q_{i}} \tag{5}\\
& P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}}
\end{align*}
$$

(5)b

And

$$
\begin{equation*}
K\left(Q_{i}, P_{i}, t\right)=H\left(q_{i}, p_{i}, t\right)+\frac{\partial F_{1}}{\partial t} \tag{5}
\end{equation*}
$$

6.1 Canonical Transformations

$>$ From Eq. (5a) we can determine " p_{i} " in terms of q_{i}, Q_{i} and t and the inverse transformation Q_{i} in terms of q_{i}, p_{i} and t

$$
\begin{aligned}
& \text { Eq. (5) } \mathrm{a} \Rightarrow Q_{i}=Q_{i}\left(q_{i}, p_{i}, t\right) \\
& \text { Eq. (5) } \mathrm{b} \Rightarrow P_{i}=P_{i}\left(q_{i}, p_{i}, t\right)
\end{aligned}
$$

\& Eq. (5)c provide connection between new and old Hamiltonian

6.1 Canonical Transformations

Case II: For $F_{2}\left(q_{i}, P_{i}, t\right)$ generating function
Since $P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}}$
Therefore,

$$
F_{1}\left(q_{i}, Q_{i}, t\right)+\sum P_{i} Q_{i}=F_{2}\left(q_{i}, P_{i}, t\right)
$$

Since $\quad \sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d F_{1}}{d t}$

$$
\begin{aligned}
& \Rightarrow \sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d}{d t}\left[F_{2}\left(q_{i}, P_{i}, t\right)-\sum P_{i} Q_{i}\right] \\
& \Rightarrow \sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d F_{2}}{d t}-\sum P_{i} \dot{Q}_{i}-\sum \dot{P}_{i} Q_{i} \\
& \Rightarrow \sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=-K\left(Q_{i}, P_{i}, t\right)+\frac{d F_{2}}{d t}-\sum \dot{P}_{i} Q_{i}
\end{aligned}
$$

Since

$$
\frac{d}{d t} F_{2}\left(q_{i}, P_{i}, t\right)=\sum \frac{\partial F_{2}}{\partial q_{i}} \dot{q}_{i}+\sum \frac{\partial F_{2}}{\partial P_{i}} \dot{P}_{i}+\frac{\partial F_{2}}{\partial t}
$$

6.1 Canonical Transformations

Putting in previous equation
$\sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=-K\left(Q_{i}, P_{i}, t\right)+\sum \frac{\partial F_{2}}{\partial q_{i}} \dot{q}_{i}+\sum \frac{\partial F_{2}}{\partial P_{i}} \dot{P}_{i}+\frac{\partial F_{2}}{\partial t}-\sum \dot{P}_{i} Q_{i}$
Comparing coefficient of " \dot{q}_{i} " \& " \dot{P}_{i} " on both sides

$$
\begin{align*}
p_{i} & =\frac{\partial F_{2}}{\partial q_{i}} \tag{6}\\
Q_{i} & =\frac{\partial F_{1}}{\partial P_{i}}
\end{align*}
$$

(6)b

And

$$
K\left(Q_{i}, P_{i}, t\right)=H\left(q_{i}, p_{i}, t\right)+\frac{\partial F_{2}}{\partial t}
$$

(6)c

6.1 Canonical Transformations

Case III: For $F_{3}\left(p_{i}, Q_{i}, t\right)$ generating function
Since $\quad p_{i}=\frac{\partial F_{1}}{\partial q_{i}}$
Therefore, we can write $\quad F_{1}\left(q_{i}, Q_{i}, t\right)-\sum p_{i} q_{i}=F_{3}\left(p_{i}, Q_{i}, t\right)$
Since $\sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d F_{1}}{d t}$

$$
\begin{aligned}
& \Rightarrow \sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d}{d t}\left[F_{3}\left(p_{i}, Q_{i}, t\right)+\sum p_{i} q_{i}\right] \\
& \Rightarrow \sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d F_{3}}{d t}+\sum p_{i} \dot{q}_{i}+\sum \dot{p}_{i} q_{i} \\
& \Rightarrow-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d F_{3}}{d t}+\sum \dot{p}_{i} q_{i}
\end{aligned}
$$

Since $\quad \frac{d}{d t} F_{3}\left(p_{i}, Q_{i}, t\right)=\sum \frac{\partial F_{3}}{\partial p_{i}} \dot{p}_{i}+\sum \frac{\partial F_{3}}{\partial Q_{i}} \dot{Q}_{i}+\frac{\partial F_{3}}{\partial t}$, putting in above equation.

6.1 Canonical Transformations

Putting in previous equation
$-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\sum \frac{\partial F_{3}}{\partial p_{i}} \dot{p}_{i}+\sum \frac{\partial F_{3}}{\partial Q_{i}} \dot{Q}_{i}+\frac{\partial F_{3}}{\partial t}+\sum \dot{p}_{i} q_{i}$
Comparing coefficient of " \dot{p}_{i} " \& " \dot{Q}_{i} " on both sides

$$
\begin{align*}
q_{i} & =-\frac{\partial F_{3}}{\partial p_{i}} \tag{7}\\
P_{i} & =-\frac{\partial F_{3}}{\partial Q_{i}} \tag{7}
\end{align*}
$$

And

$$
\begin{equation*}
K\left(Q_{i}, P_{i}, t\right)=H\left(q_{i}, p_{i}, t\right)+\frac{\partial F_{3}}{\partial t} \tag{7}
\end{equation*}
$$

6.1 Canonical Transformations

Case IV: For $F_{4}\left(p_{i}, P_{i}, t\right)$ generating function
Since $\quad p_{i}=\frac{\partial F_{1}}{\partial q_{i}} \& P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}}$
Therefore, we can write $\quad F_{1}\left(q_{i}, Q_{i}, t\right)-\sum p_{i} q_{i}+\sum P_{i} Q_{i}=F_{4}\left(p_{i}, Q_{i}, t\right)$
Since $\sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d F_{1}}{d t}$
$\Rightarrow \sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d}{d t}\left[F_{4}\left(p_{i}, Q_{i}, t\right)+\sum p_{i} q_{i}-\sum P_{i} Q_{i}\right]$
$\Rightarrow \sum p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)=\sum P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)+\frac{d F_{4}}{d t}+\sum p_{i} \dot{q}_{i}+\sum \dot{p}_{i} q_{i}-\sum P_{i} \dot{Q}_{i}-\sum \dot{P}_{i} Q_{i}$
$-H\left(q_{i}, p_{i}, t\right)=-K\left(Q_{i}, P_{i}, t\right)+\frac{d F_{4}}{d t}+\sum \dot{p}_{i} q_{i}-\sum \dot{P}_{i} Q_{i}$
Since $\quad \frac{d}{d t} F_{4}\left(p_{i}, P_{i}, t\right)=\sum \frac{\partial F_{4}}{\partial p_{i}} \dot{p}_{i}+\sum \frac{\partial F_{4}}{\partial P_{i}} \dot{P}_{i}+\frac{\partial F_{4}}{\partial t}$, putting in above equation.

6.1 Canonical Transformations

Putting in previous equation
$-H\left(q_{i}, p_{i}, t\right)=-K\left(Q_{i}, P_{i}, t\right)+\sum \frac{\partial F_{4}}{\partial p_{i}} \dot{p}_{i}+\sum \frac{\partial F_{4}}{\partial P_{i}} \dot{P}_{i}+\frac{\partial F_{4}}{\partial t}+\sum \dot{p}_{i} q_{i}-\sum \dot{P}_{i} Q_{i}$
Comparing coefficient of " \dot{p}_{i} " \& " \dot{P}_{i} " on both sides

$$
\begin{aligned}
q_{i} & =-\frac{\partial F_{4}}{\partial p_{i}} \\
Q_{i} & =\frac{\partial F_{4}}{\partial P_{i}}
\end{aligned}
$$

And

$$
K\left(Q_{i}, P_{i}, t\right)=H\left(q_{i}, p_{i}, t\right)+\frac{\partial F_{4}}{\partial t}
$$

(8)c

6.1 Canonical Transformations

Properties of the Four basic canonical transformations

Generating function	Derivatives of generating function	Trivial special cases	Transformation
$F_{1}\left(q_{i}, Q_{i}, t\right)$	$p_{i}=\frac{\partial F_{1}}{\partial q_{i}}, P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}}$	$F_{1}=q_{i} Q_{i}$	$p_{i}=Q_{i}$, $P_{i}=-q_{i}$
$F_{2}\left(q_{i}, P_{i}, t\right)$	$p_{i}=\frac{\partial F_{2}}{\partial q_{i}}, Q_{i}=\frac{\partial F_{1}}{\partial P_{i}}$	$F_{2}=q_{i} P_{i}$	$p_{i}=P_{i}$ $Q_{i}=q_{i}$
$F_{3}\left(p_{i}, Q_{i}, t\right)$	$q_{i}=-\frac{\partial F_{3}}{\partial p_{i}}, P_{i}=-\frac{\partial F_{3}}{\partial Q_{i}}$	$F_{3}=p_{i} Q_{i}$	$q_{i}=-Q_{i}$ $P_{i}=-p_{i}$
$F_{4}\left(p_{i}, P_{i}, t\right)$	$q_{i}=-\frac{\partial F_{4}}{\partial p_{i}}, Q_{i}=\frac{\partial F_{4}}{\partial P_{i}}$	$F_{4}=p_{i} P_{i}$	$q_{i}=-P_{i}$ $Q_{i}=p_{i}$

6.2 Conditions for the transformation to be canonical

Conditions for the transformation to be canonical

For $\quad F_{1}\left(q_{i}, Q_{i}, t\right) \Rightarrow \quad d F_{1}=\sum p_{i} d q_{i}-\sum P_{i} d Q_{i}$

For $\quad F_{2}\left(q_{i}, P_{i}, t\right) \Rightarrow \quad d F_{2}=\sum p_{i} d q_{i}+\sum Q_{i} d P_{i}$

For $\quad F_{3}\left(p_{i}, Q_{i}, t\right) \Rightarrow \quad d F_{3}=-\sum q_{i} d p_{i}-\sum P_{i} d Q_{i}$

For $\quad F_{4}\left(p_{i}, P_{i}, t\right) \Rightarrow \quad d F_{4}=-\sum q_{i} d p_{i}+\sum P_{i} d Q_{i}$

6.2 Conditions for the transformation to be canonical

The transformation from $\left(q_{i}, p_{i}\right)$ to $\left(Q_{i}, P_{i}\right)$ will be canonical if

$$
\sum p_{i} d q_{i}-\sum P_{i} d Q_{i}
$$

is an exact differential
Solution: Consider the generating function $F_{1}\left(q_{i}, Q_{i}\right)$

$$
d F_{1}=\sum \frac{\partial F_{1}}{\partial q_{i}} d q_{i}+\sum \frac{\partial F_{1}}{\partial Q_{i}} d Q_{i}
$$

Since

$$
p_{i}=\frac{\partial F_{1}}{\partial q_{i}} \quad \text { and } \quad P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}}
$$

Therefore,

$$
d F_{1}=\sum p_{i} d q_{i}-\sum P_{i} d Q_{i}
$$

which is an exact differential equation.

6.2 Conditions for the transformation to be canonical

Similarly, considering generating function $F_{4}\left(p_{i}, P_{i}, t\right)$

$$
\begin{aligned}
& d F_{4}\left(p_{i}, P_{i}, t\right)=\sum \frac{\partial F_{4}}{\partial p_{i}} d p_{i}+\sum \frac{\partial F_{4}}{\partial P_{i}} d P_{i} \\
& q_{i}=-\frac{\partial F_{4}}{\partial p_{i}} \quad \text { and } \quad Q_{i}=\frac{\partial F_{4}}{\partial P_{i}}
\end{aligned}
$$

Since

Therefore, $d F_{4}\left(p_{i}, P_{i}, t\right)=-\sum q_{i} d p_{i}+\sum Q_{i} d P_{i}$ which is an exact differential Now subtracting $d F_{4}$ from $d F_{1}$

$$
\begin{aligned}
& d F_{1}-d F_{4}=\sum p_{i} d q_{i}-\sum P_{i} d Q_{i}+\sum q_{i} d p_{i}-\sum Q_{i} d P_{i} \\
\Rightarrow & d F_{1}-d F_{4}=\left(\sum q_{i} d p_{i}+\sum p_{i} d q_{i}\right)-\left(\sum Q_{i} d P_{i}+\sum P_{i} d Q_{i}\right) \\
\Rightarrow & d F_{1}-d F_{4}=d\left(q_{i} p_{i}\right)-d\left(Q_{i} P_{i}\right) \\
\Rightarrow & d\left(F_{1}-F_{4}\right)=d\left(q_{i} p_{i}-Q_{i} P_{i}\right)
\end{aligned}
$$

Which is exact differential. Therefore the transformation is canonical.
And $\quad \Rightarrow F_{1}=F_{4}+q_{i} p_{i}-Q_{i} P_{i}$

